Digital Differential Protection

G. Ziegler

SIEMENS Differential Protection Symposium

Belo Horizonte, 7 to 9 Nov. 2005

No.: 1

Differential Protection: Discussion Subjects

- Ø Mode of operation
- Ø Measuring technique
- Ø Current transformers
- **Ø** Communications
- Ø Generator and motor differential protection
- Ø Transformer differential protection
- Ø Line differential protection
- Ø Busbar differential protection

Digital Differential Protection

Principles and Application

Gerhard Ziegler

SIEMENS

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 1

Contents

	Pages
Mode of operation	3 - 27
Measuring technique	28 - 45
Current transformers	46 - 86
Communications	87 - 115
Generator and motor differential protection	116 - 122
Transformer differential protection	123 - 178
Line differential protection	179 - 216
Busbar differential protection	217 - 247
7UT6 product features	248 - 264

Digital Differential Protection Mode of operation

Gerhard Ziegler

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 3

Comparison protection - Principles Absolute selectivity by using communications

Differential Protection Symposium

Protection Criterion "current difference" (differential protection)

- **n** Kirchhoff's law: $I\underline{I}_1 + \underline{I}_2 + \underline{I}_3 + ... \underline{I}_n I = I_{diff} = 0$; Current difference indicates fault
- n Security by through-current dependent restraint $|I1|+|I2|+ \dots |In| = I_{Res}$
- n Characteristic:

- n Absolute zone selectivity (limits: CT locations) No "back-up" for external faults
- n Differential protection: for generators, motors, transformers, lines and busbars

Current differential protection: Basic principle

external fault or load

internal fault

Differential protection: Connection circuit

Differential Protection Symposium

Generator and transformer differential protection

Transformer differential protection

Differential Protection Symposium

Current transformer: Principle, transformation ratio, polarity

Busbar differential protection

Differential Protection Symposium

Line differential protection

O.F. or Microwave

Two wire (pilot wire) line differential protection Voltage comparison principle

Differential Protection Symposium

False differential currents during load or external faults

Percentage differential relay

Differential protection: analog measuring circuit Rectifier bridge comparator with moving coil relay

Multi-end differential protection: Analog measuring principle

 $I_{op} = \left| \underline{I}_1 + \underline{I}_2 + \dots + \underline{I}_n \right| = \Sigma |\underline{I}| \qquad I_{Res} = \left| \underline{I}_1 \right| + \left| \underline{I}_2 \right| + \dots + \left| \underline{I}_n \right| = \left| \Sigma \underline{I} \right|$

Differential Protection Symposium

Optimised relay characteristic

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 18

Digital differential protection: Relay characteristic

$\Delta I / \Sigma I$ und I_1 / I_2 diagram

Polar diagram of differential protection

 $\left|\underline{\mathbf{I}}_{1} + \underline{\mathbf{I}}_{2}\right| > \mathbf{k} \cdot \left|\underline{\mathbf{I}}_{1} - \underline{\mathbf{I}}_{2}\right|$

 β -Plane (remote/local current)

Differential Protection Symposium

Polar diagram of digital differential protection: Basic pick-up value B > 0

Differential Protection Symposium

Mixing transformer of composed current differential protection

Differential Protection Symposium

Mixing transformer:

Pickup sensitivity of standard connection $(I_M = 2I_{L1} + I_{L3} + 3I_E)$

Fault type	Composed current		Per unit composed current related to 3-phase symmetrical current	
L1-E	$I_{ML1-E} = 5 I_{L1}$	$I_{L2}=I_{L3}=0$	$I_{ML1-E} / I_M = 5 / \sqrt{3} = 2.9$	Highest sensitivity
L2-E	$I_{ML2-E} = 3 I_{L2}$	$I_{L1} = I_{L3} = 0$	$I_{ML2-E} / I_M = 3 / \sqrt{3} = 1.73$	
L3-E	$I_{ML3-E} = 4 I_{L3}$	$I_{L1}=I_{L2}=0$	$I_{ML3-E} / I_M = 4 / \sqrt{3} = 2.3$	
L1-L2	$I_{ML12} = 5 I_{L1} + 3 I_{L2}$	$I_{L3}=0$	$I_{ML12} / I_M = 2 / \sqrt{3} = 1.15$	
L2-L3	$I_{ML23} = 3 I_{L2} + 4 I_{L3}$	$I_{L1}=0$	I_{ML23} / I_M = 1 / $\sqrt{3}$ = 0.58	
L1-L3	$I_{ML13} = 5 I_{L1} + 4 I_{L3}$	$I_{L2} = 0$	$I_{ML13} / I_M = 1 / \sqrt{3} = 0.58$	
L1-L2-L3	$I_{ML123} = 5 I_{L1} + 3I_{L2} + 4I_{L3}$	$ I_{L1} = I_{L2} = I_{L3} $	$I_{ML123} / I_M = \sqrt{3} / \sqrt{3} = 1$	

Differential Protection Symposium

Composed current differential protection Behaviour during cross country fault (isolated/compensated network)

Differential Protection Symposium

Composed current differential protection

Through current stabilisation with unsymmetrical earthing conditions

Differential Protection Symposium

High impedance differential protection: Principle

Differential Protection Symposium

High impedance differential protection: Calculation example (busbar protection)

Given:
$$n = 8$$
 feeders
 $r_{CT} = 600/1 \text{ A}$
 $U_{KN} = 500 \text{ V}$
 $R_{CT} = 4 \text{ Ohm}$
 $I_{mR} = 30 \text{ mA}$ (at relay pick-up value)

 $R_{L} = 3 \text{ Ohm (max.)}$ $I_{R-pick-up.} = 20 \text{ mA (fixed value)}$ $R_{R} = 10 \text{ kOhm}$ $I_{var} = 50 \text{ mA (at relay pick-up value)}$

Pick-up sensitivity:

Stability:

$$I_{F-\min} = r_{CT} \cdot (I_{R-pick-up} + I_{Var} + n \cdot I_{mR})$$

$$I_{F-\min} = \frac{600}{1} \cdot (0.02 + 0.05 + 8 \cdot 0.03)$$

$$I_{F-\min} = 186A \cdot (31\%)$$

$$I_{F-through-max} < r_{CT} \cdot \frac{R_R}{R_L + R_{SW}} \cdot I_{R-pick-up}$$
$$I_{F-throuh-max} < \frac{600}{1} \cdot \frac{10,000}{3+4} \cdot 0.02$$
$$I_{F-through-max} < 17kA = 28 \cdot I_n$$

Differential Protection Symposium

Digital Differential Protection Measuring Technique

Gerhard Ziegler

Differential Protection Symposium

Belo Horizonte November 2005 G. Ziegler, 10/2005 page 28

Merz and Price differential protection Patent dated 1904

a: feeder, b: generator, c: substation, d: primary winding of CT, e: secondary winding of CT, f: earth or return conductor, g: pilot wire, h: relay windings, i: circuit breakers, k,l: movable and fixed relay contacts, m: circuit, n: battery, o: electromagnetic device with armature p.

Electro-mechanical differential protection based on induction relay

Electro-mechanical differential protection Rectifier bridge comparator with moving coil relay

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 31

Differential protection Analog static measuring circuit

Digital differential protection Measuring value acquisition and processing

Differential Protection Symposium
Digital protection: Measurement based on momentary values

Differential Protection Symposium

Digital differential protection: Measurement based on momentary values

Differential Protection Symposium

Belo Horizonte November 2005 G. Z

Discrete Fourier-Transformation (Principle)

Differential Protection Symposium

Belo Horizonte November 2005

Discrete Fourier-Transformation (calculation formulae)

Differential Protection Symposium

Belo Horizonte November 2005 ^G

Orthogonal components of a current phasor dependent on the position of the data window

Differential Protection Symposium

Transfer function of a one cycle Fourier-filter

Digital protection Fast current phasor estimation

Differential Protection Symposium

Differential protection with phasors (principle)

Digital line differential protection Synchronisation of phasors (ping-pong time alignment)

Differential Protection Symposium

Split path data transmission Impact of unsymmetrical propagation time

Otherwise:

- \rightarrow more insensitive relay setting
- \rightarrow or GPS synchronisation

Synchronisation of Differential relays via GPS

Differential Protection Symposium

Devices for GPS time synchronisation

- n GPS receiver with 2 optical outputs (7XV5664-0AA00). Output for IRIB-B telegram and output for second/ minute pulse
- n Galvanic separation between the receiver and the tranceiver
 7XV5654
- n Optic/electric signal conversion in the tranceiver
- Distribution of the electrical signals via Y-bus cable to port A of the relays (telegram)
- n Electronic contact for the minute pulse in case of synchronisation through binary input with battery voltage

GPS receiver 7XV5664

Outdoor antenna FG4490G10 for GPS

Tranceiver 7XV5654

Differential Protection Symposium

Belo Horizonte November 2005

Additional components for SICAM SAS GPS-System

- 24 satellites move in a height of20 000km on 6 different paths
- Transmission frequency 1,57542GHz
- For a continuous time reception min. 4 satellites is necessary
- High accuracy : 1 usec

Operating characteristic of digital differential relays

SIEMENS Differential protection CT saturation with internal and external faults

Differential Protection Symposium

Belo Horizonte November 2005

SIEMENS Saturation detector: Locus of $\Delta I/\Sigma I$ for external faults without and with CT saturation

SIEMENS Differential current caused by transient CT saturation (ext. fault) with operating and restraint current of busbar protection 7SS5

Differential current appears only every second half wave!

Tripping logic of digital busbar protection 7SS600/7SS5 with saturation detector (simplified)

Differential Protection Symposium

SIEMENS Transformer differential protection 7UT6: Saturation detection and automatic increase stabilisation

Differential Protection Symposium

Belo Horizonte November 2005

Transient CT saturation causes false differential currents

Adaptive restraint against CT errors (7SD52/61)

Differential Protection Symposium

Belo Horizonte November 2005

Adaptive 87 restraint (7SD52/61) considers current CT- errors

Differential Protection Symposium

External fault Increase of stabilisation after detection of saturation

Differential Protection Symposium

SIEMENS

Belo Horizonte November 2005

SIEMENS Fast charge comparison supplement speeds up phasor based line differential protection (7SD52/61)

1/4 cycle data windows of fast charge comparison

- •Synchronized with fault inception
- •Released by I_{diff} >>

Generator, Motor and Transformer protection: Adaptive algorithms to upgrade relay stability and dependability with CT saturation (7UT6)

Differential Protection Symposium

Belo Horizonte November 2005

Current Transformers for Differential Relaying Requirements and Dimensioning

Gerhard Ziegler

Differential Protection Symposium

Belo Horizonte November 2005

Equivalent current transformer circuit

Current transformer:

Phase displacement (δ) and current ratio error (ϵ)

Dimensioning of CTs for differential protection

 K_{TF} (over-dimensioning factor) considers the single sided CT over-magnetising due to the d.c. component in short circuit current I_{SC} . K_{TF} values required in practice depend on relay type and design. Recommendations are provided by manufacturers (see Application Guide)

Current transformer, Standard for steady-state performance

IEC 60044-1 specifies the following classes:

Accuracy class	Current error at nominal current (In)	Angle error d at rated current In	Total error at n x In (rated accuracy limit)
5P	± 1 %	± 60 minutes	5 %
10P	± 5%		10 %

Current transformers, Standard for transient performance

IEC 60044-6 specifies four classes:

Class	Error at rated current		Maximum error at rated accuracy limit	Remanence
	Ratio error	Angle error		
TPX (closed iron core)	± 0,5 %	\pm 30 min	$\hat{e} \leq 10\%$	no limit
TPY with anti-remanence air-gap	± 1,0 %	± 30 min	$\hat{e} \leq 10\%$	< 10 %
TPZ linear core	± 1,0 %	\pm 180 \pm 18 min	$\hat{e} \le 10\%$ (a.c. current only)	negligible
TPS closed iron core	Specia (Knee	No limit		

Definition of the CT knee-point voltage (BS and IEC)

British Standard BS3938: Class X

or

IEC 60044-1 Amendment 2000/07: Class PX

Specify:

Knee point voltage

Secondary resistance R_{CT}

CT specification according to ANSI C57.13

Differential Protection Symposium

Current transformer saturation

Transient saturation with offset current

CT saturation

Currents and magnetising

Course of CT-flux during off-set short-circuit current

Differential Protection Symposium

CT with closed iron core,

Over-dimensioning factor K_{TF} for specified time to saturation (t_M)

Differential Protection Symposium

Transient dimensioning factor K"_{td} for short time to saturation t_M

Differential Protection Symposium

Belo Horizonte November 2005

CT over-dimensioning factor $K_{TF}(t_M,T_N)$ in the case of short time to saturation (t_M)

Current transformer

Magnetising and de-magnetising

SIEMENS Current transformer

Course of flux in the case of non-successful auto-reclosure

Differential Protection Symposium

Current transformer Magnetising curve and point of remanence

Current transformers TPX und TPY Course of the flux with non-successful auto-reclosure

Current transformer with linear core (TPZ), Course of the flux with non-successful auto-reclosure

Dimensioning of CTs for protection application

$$ALF' = ALF \cdot \frac{P_{1} + P_{N}}{P_{1} + P_{B}} = n \cdot \frac{R_{1} + R_{N}}{R_{1} + R_{B}}$$
Rated CT burden: P_{N}
 $P_{1} = R_{I} \cdot I_{2N}^{2}$ $ALF = ALF' \cdot \frac{P_{1} + P_{B}}{P_{1} + P_{N}} = ALF' \cdot \frac{R_{I} + R_{B}}{R_{I} + R_{N}}$ Actually connected
burden : $P_{B} = R_{B} \cdot I_{2N}^{2}$ $ALF = ALF' \cdot \frac{P_{1} + P_{B}}{P_{1} + P_{N}} = ALF' \cdot \frac{R_{I} + R_{B}}{R_{I} + R_{N}}$ with: $R_{B} = R_{L} + R_{R} =$ total burden resistance
 $R_{R} =$ relay burden resistance of connecting cable
 $R_{R} =$ relay burden resistancewith $ALF' \ge K_{OD} \cdot \frac{I_{SC}}{I_{N}}$ Theory:No saturation during
total fault duration: $K'_{TF} = \frac{B_{Max}}{B_{L}} = 1 + wT_{N} = 1 + \frac{X_{N}}{R_{N}}$ Where K_{OD} is the total
over-dimensioning factor:
 $K_{OD} \ge K_{TF} \cdot K_{Re} m$ No saturation for
the specified time t_{M} : $K''_{TF} = \begin{bmatrix} 1 + \frac{\omega \cdot T_{N} \cdot T_{S}}{T_{N}} (e^{-T_{N}} - e^{-T_{S}}] \end{bmatrix}$ $K_{Re} m = 1 + \frac{\% \text{ remanence}}{100}$ Practice:
 $K_{OD} = K_{TF}$ Remanence only considered in extra high
voltage systems (EHV)
 K_{TF} -values acc. to relay manufacturers' guides

Differential Protection Symposium

Practical CT dimensioning

using dimensioning factors K_{td} (required minimum time to saturation)

IEC 60044-1 and 60044-6

300/5 A, 5P20, VA (Rb= 1.0 Ω), R_{ct} = 0.15 Ω

$$ALF' \ge K_{SSC} \cdot K_{td}$$
$$ALF' = \frac{R_{ct} + R_{b-rated}}{R_{ct} + R_{b-connected}} \cdot ALF$$

 $ALF \ge K_{td} \cdot \frac{I_{F-max}}{I_{pn}} \cdot \frac{R_{ct} + R_{b-connected}}{R_{ct} + R_{b-rated}}$

BS 3839 (IEC: 60044-1 addendum)

$$E_{al} = \frac{I_{F-max}}{I_{pn}} \cdot K_{td} \cdot (R_{ct} + R_{b-con.}) \cdot I_{sn-CT}$$
$$U_{KN} \approx (0.8...0.85) \cdot E_{al}$$

Differential Protection Symposium

Belo Horizonte November 2005

ANSI C57.13

300/5 A, C100 (Rb= 1
$$\Omega$$
)
 $E_{al} \approx (U_{ANSI} + 20 \cdot 5 \cdot R_{ct})$
 $= (20 \cdot 5 \cdot Z_{b-rated} + 20 \cdot 5 \cdot R_{ct})$

$$20 \ge K_{td} \cdot \frac{I_{F-\max}}{I_{pn}} \cdot \frac{R_{ct} + R_{b-connected}}{R_{ct} + R_{b-rated}}$$

Transient dim. factor: K _{td}	
No saturation:	$1 + X/R = 1 + \omega \cdot T_p$
Differential relays:	1 (87BB: 0.5)
Distance relays:	2 to 4 close-in faults
	5 to 10 zone end
faults	
Ω/C relays: $I >> AI E' > (I >> 1/1)$	

- ü Digital relays use intelligent algorithms and are therefore highly tolerant against CT saturation.
- ü In particular differential relays allow short time to saturation of ¼ cycle and below.
- **ü** Determination of transient dimensioning factors for short time to saturation must consider the real flux course after fault inception.
- With time to saturation < 10 ms, the critical point on wave of fault inception is not close to voltage zero-crossing (fully offset current), but varies and is closer to voltage maximum (a.c. current).
- **ü** CT dimensioning is normally based on relay specific K_{td} factors provided by manufacturers
- **ü** In practice, fully offset s.c. current has been assumed while remanence has been widely neglected for CT dimensioning.
- **ü** A new dimensioning factor is discussed in CIGRE WG B5.02, composed of more probable transient and remanence factors.

CT dimensioning for differential protection (1)

Net:
$$Z_N = \frac{U_N^2 [kV^2]}{S_{SC}''[MVA]} = \frac{110^2}{3000} = 4.03 \ \Omega$$
 Net: $Z_N = \frac{U_N^2 [kV^2]}{S_{SC}''[MVA]} = \frac{20^2}{3000} = 0.13 \ \Omega$
Transf.: $Z_T = \frac{U_N^2 [kV^2]}{P_{N-T}[MVA]} \cdot \frac{u_T [\%]}{100} = \frac{110^2}{40} \cdot \frac{12\%}{100} = 36.3 \ \Omega$ Transf.: $Z_T = \frac{U_N^2 [kV^2]}{P_{N-T}[MVA]} \cdot \frac{u_T [\%]}{100} = \frac{20^2}{40} \cdot \frac{12\%}{100} = 1.2 \ \Omega$
Line: $Z_L = l[km] \cdot z_L' [\Omega/km] = 8 \cdot 0, 4 = 3, 2 \ \Omega$

CT dimensioning for differential protection (2)

F1
$$I_{F1} = \frac{1.1 \cdot U_N / \sqrt{3}}{Z_N} = \frac{1.1 \cdot 110 \text{kV} / \sqrt{3}}{4.03 \,\Omega} = 17.3 \text{ kA}$$
 F3 $I_{F3} = \frac{1.1 \cdot U_N / \sqrt{3}}{Z_N + Z_T} = \frac{1.1 \cdot 20 \text{kV} / \sqrt{3}}{0.13 \,\Omega + 1.2 \,\Omega} = 9.55 \text{ kA}$
F2 $I_{F2} = \frac{1.1 \cdot U_N / \sqrt{3}}{Z_N + Z_T} = \frac{1.1 \cdot 110 \text{kV} / \sqrt{3}}{4.03 \,\Omega + 36.3 \,\Omega} = 1.73 \text{ kA}$ F4 $I_{F4} = \frac{1.1 \cdot U_N / \sqrt{3}}{Z_N + Z_T + Z_L} = \frac{1.1 \cdot 20 \text{kV} / \sqrt{3}}{0.13 \,\Omega + 1.2 \,\Omega + 3.2 \,\Omega} = 2.8 \text{ kA}$

Dimensioning of the 110 kV CTs for the transformer differential protection:

Manufacturer recommends for relay 7UT61:

Saturation free time ³ 4ms for internal faults
 Over-dimensioning factor K_{TF} ³ 1,2

for through flowing currents (external faults)

The saturation free time of 3 ms corresponds to $K_{TF} \ge 0.75$ See diagram, page 59

Criterion 1) therefore reads:

For criterion 2) we get:

ALF'
$$\ge K_{TF} \cdot \frac{I_{F1}}{I_N} = 0,75 \cdot \frac{17300}{300} = 43$$

$$ALF' \ge K_{TF} \cdot \frac{I_{F2}}{I_N} = 1, 2 \cdot \frac{1730}{300} = 7$$

The 110 kV CTs must be dimensioned according to criterion 1).

CT dimensioning for differential protection (3)

We try to use a CT type: 300/1, 10 VA, 5P?, internal burden 2 VA.

 $ALF \ge \frac{P_i + P_{operation}}{P_i + P_{rated}} \cdot ALF' = \frac{2 + 2.5}{2 + 10} \cdot 43 = 16.1 \quad \text{(Connected burden estimated to about 2.5 VA)}$

Chosen, with a security margin : 300 /1 A, 5P20, 10 VA, $R_2 \le 2$ Ohm ($P_1 \le 2VA$)

Specification of the CTs at the 20 kV side of the transformer:

It is good relaying practice to choose the same dimensioning as for the CTs on the 110 kV side:

1200/1, 10 VA, 5P20, $R_2 \le 2$ Ohm ($P_i \le 2VA$)

Dimensioning of the 20 kV CTs for line protection:

For relay 7SD61, it is required:

The saturation free time of **3** ms corresponds to $K_{TF} \ge 0.5$ See diagram, page 59

Criterion 1') therefore reads:

ALF'
$$\ge K_{TF} \cdot \frac{I_{F3}}{I_N} = 0.5 \cdot \frac{9550}{200} = 24$$

1') Saturation free time ³ 3ms for internal faults 2') Over-dimensioning factor K_{TF} ³ 1.2

for through flowing currents (external faults)

For criterion 2') we get:

$$ALF' \ge K_{TF} \cdot \frac{I_{F4}}{I_N} = 1.2 \cdot \frac{2800}{200} = 16.8$$

The 20 kV line CTs must be dimensioned according to criterion 1').

CT dimensioning for differential protection (4)

For the 20 kV line we have considered the CT type: 200/5 A, 5 VA, 5P?, internal burden ca. 1 VA

$$ALF \ge \frac{P_i + P_{operation}}{P_i + P_{rated}} \cdot ALF' = \frac{1+1}{1+5} \cdot 24 = 8$$
 (Connected burden about 1 VA)

Specification of line CTs:

We choose the next higher standard accuracy limit factor ALF=10 : Herewith, we can specify: CT Type TPX, 200/5 A, 5 VA, 5P10, $R_2 \le 0.04$ Ohm ($P_i \le 1$ VA)

Interposing CTs, Basic versions

Interposing CTs, Example

Interposing CTs in Y- Δ -connection

False operation during external fault

of transformer differential protection without zero-sequence current filter

Zero-sequence current filter

Differential Protection Symposium

Belo Horizonte November 2005

Biasing of transformer differential protection during external earth fault with zero-sequence current filter (closed delta winding)

Current matching with interposing CTs (1) Calculation example

Current matching with interposing CTs (2) Calculation example

Current transformation ratio:

We take through flowing rated current as reference:

. 110kV-side:

Mean current value of upper and lower tap changer position:

$$I_{1} = \frac{10,000 \text{kVA}}{\sqrt{3} \cdot (110 \text{kV} + 16\%)} = 45.2 \text{A} \qquad I_{1}' = \frac{10,000 \text{kVA}}{\sqrt{3} \cdot (110 \text{kV} - 16\%)} = 62.5 \text{A} \qquad I_{1-\text{mean}} = \frac{45.2 + 62.5}{2} = 53.9 \text{A}$$

<u>6 kV-side:</u> $I_2 = \frac{10.000 kVA}{\sqrt{3} \cdot 6.3 kV} = 915A$

The corresponding secondary currents are:

$$i_1 = 53.9 \cdot \frac{1}{75} = 0.719 \text{ A}$$
 and $i_2 = 915 \cdot \frac{5}{1200} = 3.813$

The current in the star connected winding of the interposing transformer is l_1

The current in the delta connected winding is: $i_2 / \sqrt{3}$.

The ratio of the interposing CT must be :

$$\frac{w_1}{w_2} = \frac{i_2 / \sqrt{3}}{i_1} = \frac{3.813 / \sqrt{3}}{0.719} = \frac{2.202}{0.719} = 3.06$$

Differential Protection Symposium

Connection and miks as show

Designation of transformer or CT vector groups (1) Clock-wise notation according to IEC 60076-1

Designation of transformer or CT vector groups (2) Clock-wise notation according to IEC 60076-1, examples

Frequently used vector groups (IEC 60076-1)

Proceed in the following steps:

1. Starting on the high voltage winding, the phase connection terminals are numbered with 0, 4, 8 (always $4 \times 30^{\circ} = 120^{\circ}$ phase shift).

2. The opposite end of each winding is labelled with a number incremented by +6 relative to the phase connection ($6x \ 30^{\circ} = 180^{\circ}$).

3. The secondary windings are numbered the same. In this context it is assumed that the polarity of the windings is the same in the diagram. (If in doubt, polarity marks may also be applied.)

4. The phase connection is labelled with the average value of the corresponding terminal designations belonging to the winding terminals connected to this phase terminal, e.g. (6+4)/2=5

5. The difference between the high and low voltage side terminal numbers of same phases corresponds each with the vector group number, being Yd5 in this case.

Checking the connections of transformer differential protection using the clock-wise notation method

Current distribution in Y- Δ -transformer circuits for different external fault types

Checking the connections of transformer differential protection using the arrow method (two-phase fault)

Checking the connections of transformer differential protection using the arrow method (single-phase earth fault)

Digital Differential Protection Communications

Gerhard Ziegler

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 87

Comparison protection Absolute selectivity by using communication

- Directial comparison distance protection Exchange of YES/NO signals (e.g. fault forward / reverse)
- Current comparison (phasors) differential protection

 $| \underline{\Delta I} | = | \underline{I}_A - \underline{I}_B | > I_{pick-up}$
Signal transmission channels for differential relaying

Pilot wires

- AC (50/60 Hz), voice frequency and digital communication (128 kbit/s)
- for short distances (< about 20 km)
- influenced by earth short-circuit currents!

Optical fibres

- wide-band communication (n · 64 kbit/s)
- digital signal transmission (PCM)
- up to about 150 km without repeater stations
- noise proof

Digital microwave channels 2 - 10 GHz

- wide-band communication (n · 64 kbit/s)
- digital signal transmission (PCM)
- up to about 50 km (sight connection)
- dependent on weather conditions (fading)

Analog pilot wire differential relaying

Pilot wires are normally operated insulated form earth

Voltage limiters (glow dischargers) connected to earth, as used with telephone lines, are not allowed!

Relay-to-Relay pilot wires communication New technology on existing (copper-) pilots

Differential Protection Symposium

Wire pilot cables Longitudinal voltage induced by earth currents

SIFMFNS

Disturbance voltage caused by rise in station potential

Legend:

- R_G STP station grounding resistance
- station potential
- PGA potential gradient area
- RGP remote ground potential
- Е station potential rise against remote ground (ohmic coupled disturbance voltage)

HV insulated protection pilot cable (example)

core dia-	pi	lot	pilot					
meter	resistance		capacitance		test voltage (r.m.s. value)			e)
	Core	Loop		core-	core-	triple	pair	pair to
				core	shield	core	to	triple
mm	Ω/km	Ω/km	nF/km			to	pair	core
						triple		
						core		
				kV	kV	kV	kV	kV
1,4	11,9			2,5	8	8		
0,8		73,2	60	2	2		2	8

Symmetry: better 10⁻³ (60 db) at 800/1000 Hz

better 10⁻⁴ (80 db) at 50/60 Hz

 $(U_q < 10^{-4} \cdot U_l)$

American practice

Neutralising reactor to compensate potential rise at the station

Differential Protection Symposium

Optic fibre (OF) Cable

Differential Protection Symposium

Optic fibers and connectors

Mono-mode fiber (IEC 793-2) Type 10/125 mm for 1300 and 1550 nm

Differential Protection Symposium

Optic fibres: Principle of light wave propagation

Differential Protection Symposium

Optic attenuation of a mono-mode fibre

Optic fibre connections: Coarse planning rules

Optic component:			Attenuation:
Mono-mode fibre at 13		300 nm	$\alpha_{\rm OFC} = 0.45 \text{ dB/km}$
	at 1	550 nm	$\alpha_{\rm OFC}$ = 0.30 dB/km
Gradient fibre	at a	850 nm	$\alpha_{OFC} = 2,5 \text{ to } 3,5 \text{ dB/km}$
	at 13	300 nm	$\alpha_{OFC} = 0.7$ to 1.0 dB/km
Per splice			$\alpha_{SPL} = 0.1 \text{ dB}$
Per connector		FSMA	$\alpha_{\rm CON} = 1.0 \text{ dB}$
		FC	$\alpha_{\rm CON} = 0.5 \text{ dB}$
Reserve			$\alpha_{RES} = 0.1$ to 0.4 dB/km

Total attenuation of the OF cable system:

$$a_{TOT} = l \cdot a_{OFC} + n \cdot a_{SPL} + 2 \cdot a_{CON} + l \cdot a_{RES}$$

Differential Protection Symposium

SIEMENS	Optic Fibre signal transmission system: Calculation example		
Task:	Optic fibre signal transmission device 7VR500 Estimation of maximum reach		
Given:	Device data: Sending power of laser diode: $\alpha_S = -14 \text{ dB}$ Minimum reception power: $\alpha_E = -46 \text{ dB}$ Optic wave length: 1300 nm The optic fibre cable is shipped in sections of each 2 km. For reserve, 0.2 dB/km have been chosen.		
Seached:	Maximum distance that can be bridged		
Solution:	The cable length is: l=x·2 km The number of splices is: n=x-1 The admissible system attenuation: -14- (-46)=32 dB Therefore: $32dB = x \cdot 2km \cdot 0.45 \frac{dB}{km} + (x-1) \cdot 0.1dB + 2 \cdot 0.5dB + x \cdot 2km \cdot 0.2 \frac{dB}{km}$		
	we get: x=22 and I=44 km		

Radio (Micro-wave) Signalling

- Line-of-sight path (up to about 50 km without repeater)
- 150 MHz to 20 GHz, n times 4 kHz channels analog and n times 64 (56) kbit/s digital (PCM)
- Advantage: Independent of line short-circuit and switching disturbances
- Disadvantage: Fading and reflections during bad weather conditions Additional pilot links necessary to sending/receiver stations

Digital communication

- **u** Wide-band communication via optic fibre or digital microwave
- **u** n times 64 (56) kbit/s channels
- **u** pulse code modulation (PCM)
- **u** transmission via dedicated channels or communication network
- u access through time division multiplexers
- ➡ interface standard for synchronous data transmission: CCITT G.703 or X.21 (wired connection)
- ➡ interface standard for asynchronous data transmission:
 V.24/V.28 to CCITT or RS485 to EIA (wired connection)

Function sequence of message transmission Sending side

Differential Protection Symposium

Structure of a remote control telegram

Digital communication Synchronous transmission mode

- all bits follow a fixed time frame
- synchronism between sending and receiving station. (separate clocking line or signal codes with clock regain)
- block (frame) synchronising by opening and closing flags
- suitable for high data rates
- used protocol: HDLC (high-level data link control)
- cyclic redundancy check (CRC) or frame check sequence (FCS) by 16 or 32 added check-bits (probability of non-detected telegram block errors: 10^{-5} (CRC-16) or 10^{-10} (CRC-32))
- used for high speed teleprotection

HDLC telegram frame format	Opening Flag	Address Field	Control Field	Information Field	Frame Check FCS	Closing Flag
to ISO 3309:	01111110	8 or more bits	8 or 16 bits	any length	16 or 32 bits	01111110

Differential Protection Symposium

Multiplexing

Differential Protection Symposium

Communication through transmission networks

Differential Protection Symposium

Structure of a modern data communication network

ØNetworks are plesiochronous (PDH), synchronous (SDH) or asynchronous (ATM)
ØData terminal devices (e.g. relays) are synchronised through the network
ØRings guarantee redundance.
ØData of different services (e.g. telephone and protection are commonly transmitted (time multiplexed)
ØProtection relays must be adapted to the given network conditions (e.g. changing propagation time due to path witching.

POTS: Plain Old Telephone Services

ISDN: Integrated Services Digital Network

STM-n: Synchronous Transport Module level n

SMA: Synchronous Module Access

ATM: Asynchronous Transmission Mode

ISP: Internet Service Provider

Differential Protection Symposium

Circuit Switching

The physically assigned channel is established before and disconnected after communication

POT (Plain old telephony), ISDN

Digital networks on basis of PCM with plesiochronous digital hierarchy (PDH)

Reliable and fast transmission possible when connection is established.

Circuit establishment requires a free channel from A to B

Connection occupies channel also when no data is exchanged

Deterministic data transmission (fixed data transmission time per channel)

Packet switching

Data stream is segmented to packets

Transmission runs connection-oriented or connection-less

Synchronous digital hierarchy (SDH), ATM Backbone

Cannel not occupied during whole connection time

Channels can be used quasi-simultaneously

Data transmission by principle time is random. SDH and ATM can provide virtual circuitswitched channels. However, **split path** signal routing may however result in unsymmetrical signal transmission times.

SDH network: Split path routing

Digital Transport Systems: Bundling of channels

Differential Protection Symposium

PDH (Plesiochronous Digital Hierarchy)

Multiplexing structure:

ØBase rate 64 kbit/s (digital equivalent of analogue telephone channel)

ØEquipments may generate slightly different bit rates due to independent internal clocks

ØBit stuffing is used to bring individual signals up to the same rate prior to multiplexing (Dummy bits are inserted at the sending side and removed at the receiving side)

ØIntermediate inserting and extracting of individual channels is not possible, but the full multiplexing range has always to be run through.

Hierarchical level	Europe	USA
0	64 kbit/s	56 kbit/s
1	2'048 Mbit/s	1'544 Mbit/s
2	8'448 Mbit/s	6'312 Mbit/s
3	34'368 Mbit/s	44'736 Mbit/s
4	139°264 Mbit/s	139°264 Mbit/s

Differential Protection Symposium

SDH (Synchronous Digital Hierarchy)

Multiplexing structure

Ø SONET (Synchronous Optical Network) first appeared in USA (1985)

Ø ITU-T (formerly CCITT) issued B-ISDN as world wide standard (1988)

Ø All multiplexing functions operate synchronously using clocks derived from a common source

Ø Designed to carry also future ATM

	SDH		SONET	
STM level	Aggregate Rate	OC level	STS level	Aggregate Rate
STM-1 STM-4 SZM-16 STM-64	155,520 Mbit/s 622,080 Mbit/s 2'488,320 Mbit/s 9'953,280 Mbit/s	ФС-1 ФС-3 ФС-12 ФС-48 ФС-192	STS-1 STS-3 STS-12 STS-48 STS-192	51,840 Mbit/s 155,520 Mbit/s 622,080 Mbit/s 2'488,320 Mbit/s 9'953,280 Mbit/s

ATM (Asynchronous Transfer Mode) and Broadband B-ISDN

Features of ATM:

Ø Synchronisation individually per packet

Ø Packets carry each complete address of destination so that each can be separately delivered (Datagrams, here called Cells)

 Information stream is segmented into cells that are 53 octets long

Ø ATM sets up a virtual switched connection and sends data along a switched path from source to destination

Ø Requirements on bandwidth, bounded delay and delay variation can be set by the user

ØSingle cells can be inserted or removed at the nodes, as required

Ø The predominant use is for net backbones

TDM over optical fiber

Bit error rate (of data channels)

Bit error rate:

 $p = \frac{number of faulty bits}{total number of sent bits}$

Typical bit error rates of public services:

Telephone circuits	ca. 10 ⁻⁵
Digital data networks (Germany)	ca. 10 ⁻⁶ to 10 ⁻⁷
Coaxial cables (LAN)	ca. 10 ⁻⁹
Fiber optic communication	ca. 10 ⁻¹²

Utility conditions (CIGRE SC34 Report 2001):

Fiber optic communication	ca. 10 ⁻⁶
Data networks (PDH, SDH, ATM)	ca. 10 ⁻⁶
Microwave	ca. 10 ⁻³

Requirements acc. to CIGRE report:

Protection and control	
in general:	< 10 ⁻⁶
Function guaranteed up to	$< 10^{-3}$ however downgraded (reduced operating speed)
Line differential protection	$< 10^{-6}$ and $< 10^{-5}$ during power system faults

Differential Protection Symposium

Error detection methods: Cyclic redundancy check

Differential Protection Symposium

Data integrity (line differential protection 7SD52/61)

Residual error rate

Residual error rate:

 $R = \frac{number of not detected faulty telegrams(data blocks)}{total number of sent telegrams(data blocks)}$

 $R < 10^{-10}$ to 10^{-15}

Practical range of protection and control systems:

Time between 2 **not** detected errors:

$$\Gamma = \frac{n}{\mathbf{v} \cdot \mathbf{R}}$$

n= length of telegram (data block) v= transmission speed in bit/s

Example:

Telegrams of n = 200 bit are continuously transmitted at 64 kbit/s.

R	Т	typical application
10-7	20 hours	cyclic transmission (metering)
10-10	2.3 years	
10-15	230000 years	remote control and protection

Protection of a short line lines

Differential relay using direct digital relay-to-relay communication

Communication via direct relay-relay connection

Fibre type	optical wave length	maximum attenuation	permissible distance
Multi-mode 62.5/125 μm	820 nm	16 dB	ca. 3.5 km
Monomode 9/ 125 µm	1300 nm	29 dB	ca. 60 km
9/ 125 µm	1500 nm	29 dB	ca. 100 km

Differential Protection Symposium

Line differential relaying using digital communication

Differential protection

with communication through data net

I Microsecond exact time keeping in the relays

- n Each relay has its individual time keeping
- n Sent and received telegrams get microsecond accurate time stamps

Special relay properties for network communication

- Measurement of propagation times and automatic correction 0 30 ms
- Detection of channel switching in the network
- Unique address for each relay (1 65525) to detect signal misdirection (channel cross-over of loop-back)
- Measurement of channel quality (availability, error rate)

Change of the network path -> Adaptive add-on stabilisation

Settable time difference to consider given data transmission asymmetry

Adaptive topology recognition

- Automatic recognition of connections and remote end devices
- Automatic re-routing from ring to chain topology if one data connection fails In case of multi-terminal protection, remaining relay system continues operation if one line end is switched off and the relay is logged out for maintenance

Individual time references by synchro-phasors

Definition of a synchro-phasor:

Synchro-phasors, are phasors, which are measured at different network locations by independent devices and referred to a common time basis

Phasor synchronisation between line ends

Differential Protection Symposium

Specification of data channel for line differential protection based on Cigre Report: Protection using Telecommunication *)

Data rate		64 kbit/s (min.)
Channel delay time:		< 5 ms
Channel dela	< 0.2 ms	
Bit error rate	normal:	< 10 ⁻⁶
	during power system fault	< 10 ⁻⁵ *)
Availability:		> 99.99 %

*) Report of WG34/35.11, Brochure REF. 192, Cigre Central Office, Paris, 2001,

*) It is suggested that for a BER of less than 10^{-6} the dependability shall not suffer a noticeable deterioration. For a BER of 10^{-6} to 10^{-3} the teleprotection may still able to perform its function although a loss in dependability is to be expected.

Differential Protection Symposium

Generator differential protection

Connection circuit

Operating characteristic

Generator HI differential protection

Differential Protection Symposium

Transverse differential protection

Differential Protection Symposium

HI earth current differential protection

Earth current differential protection for generators

Motor starting current

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 123

Transformer: Function principle and equivalent circuits

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 124

Typical Transformer data

Rated power	Ratio	Short-circuit voltage % UN	No-load magnetizing current % In
950	850/21	17	0.2
000	030/21	17	0.2
600	400/230	18.5	0.25
300	400/120	19	0.1
300	230/120	24	0.1
40	110/11	17	0.1
16	30/10.5	8.0	0.2
6.3	30/10.5	7.5	0.2
0.63	10/0.4	4.0	0.15

Transformer Inrush current

Source: Sonnemann, et al.: Magnetizing Inrush phenomena in transformer banks, AIEE Trans., 77, P. III, 1958, pp. 884-892

Differential Protection Symposium

Inrush currents of a Y- Δ -transformer Neutral of Y-winding earthed

Source: Sonnemann et al. : Magnetizing Inrush phenomena in transformer banks, AIEE Trans., 77, P. III, 1958, pp. 884-892

Differential Protection Symposium

Differential Protection Symposium

Inrush currents of a three-phase transformer recorded with relay 7UT51

Differential Protection Symposium

Transformer Inrush current: Amplitude and time constant

Sympathetic Inrush

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 131

Transformer overfluxing

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 132

Vector group adaptation with matching CTs Current distribution with external ph-ph fault

Differential Protection Symposium

Vector group adaptation and I_0 -elimination with matching CTs Current distribution with external ph-E fault

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 134

Traditional I₀-elimination with matching CTs Current distribution in case of an external earth fault

Differential Protection Symposium

Traditional I₀-elimination with matching CTs Current distribution in case of an internal earth fault

Differential Protection Symposium

Traditional I₀-correction with matching CTs Current distribution with external ph-E fault

Differential Protection Symposium

Traditional I₀-correction with matching CTs Current distribution with internal ph-E fault

Differential Protection Symposium

Transformer differential protection, connection

Digital transformer protection Adaptation of currents for comparison (1)

Differential Protection Symposium

Digital transformer protection Adaptation of currents for comparison (2)

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 141

Adaptation of currents for comparison Relay input data

Input data:

•n times 30 ⁰	vector group number (only for 2nd and 3rd winding, 1st winding is reference)
•UN (kV)	Rated winding voltage
•SN (MVA)	rated winding power
•INW (A)	Primary rated CT current
•Line or BB	direction of CT neutral
•Elimination / Correction / without	I ₀ -treatment
•Side XX	Assignment input for REF
•INW S (A)	Primary rated current of neutral CT
•Neutral CT	Earth side connection to relay: Q7 or Q8?

Winding 1 (reference) is normally:

•High voltage side

At windings with tap changer:

$$U_N = 2 \cdot \frac{U_{max} \cdot U_{min}}{U_{max} + U_{min}}$$

Differential Protection Symposium

Digital transformer protection Current adaptation, Example (1)

Digital transformer protection Current adaptation, Example (2)

20-kV-side

$$I_{N-Trafo-W2} = \frac{100MVA}{\sqrt{3} \cdot 20kV} = 2887A$$

$$J_{r,s, t-sek} = \frac{1}{3000} \cdot 13200 / \sqrt{3} = 4.4 / \sqrt{3} \text{ A}$$
$$I_{Norm} = \frac{3000}{2887} \cdot 4.4 / \sqrt{3} = 4.57 / \sqrt{3} \text{ A}$$

$$I_{N-Trafo-W1} = \frac{100MVA}{\sqrt{3} \cdot 110kV} = 525A$$

$$J_{R,S,T-sek} = \frac{1}{600} \cdot 2400 = 4,0 \text{ A}$$
$$I_{Norm} = \frac{600}{525} \cdot 4 = 4,57\text{ A}$$

I0-elimination:

Vector group adaptation: Yd5

$$\begin{vmatrix} I_r & ** \\ I_s & ** \\ I_t & ** \end{vmatrix} = \frac{1}{\sqrt{3}} \begin{vmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{vmatrix} \cdot \begin{vmatrix} 4,57/\sqrt{3} \\ -4,57/\sqrt{3} \\ 0 \end{vmatrix} = \begin{vmatrix} -4,57/3 \\ 2 \cdot 4,57/3 \\ -4,57/3 \end{vmatrix} \qquad \begin{vmatrix} I_r & * \\ I_s & * \\ I_t & * \end{vmatrix} = \frac{1}{3} \cdot \begin{vmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{vmatrix} \cdot \begin{vmatrix} 4,57/3 \\ -4,57/3 \\ 4,57/3 \end{vmatrix}$$

$$I_{A-R} = I_{R} * + I_{r} * * = 4,57 / \sqrt{3} - 4,57 / \sqrt{3} = 0$$

$$I_{A-S} = I_{S} * + I_{s} * * = -2 \cdot 4,57 / \sqrt{3} + 2 \cdot 4,57 / \sqrt{3} = 0$$

$$I_{A-T} = I_{T} * + I_{t} * * = 4,57 / \sqrt{3} - 4,57 / \sqrt{3} = 0$$

Differential Protection Symposium

Current adaptation (1)

Practical example for the need of matching CTs

Matching CTs recommended, if k_Wan_n > 4 or k_Wan_n < 1/4: *)

*) To keep the specified measuring accuracy of 7UT51. For protection only necessary if 8 <k_Wan_n <1/8

Differential Protection Symposium

Current adaptation (2)

Practical example for the need of matching CTs

$I_{n-Tr-W1} = \frac{1050 \cdot 10^3}{\sqrt{3} \cdot 500} = 1213A$	Relay		Transformer winding 1	Transformer winding 3	
$I_{n-Tr-W1-\text{sec}} = \frac{1213A}{1500/5} = 4,04A$	40 · In=	40.In= 15 Bit +sign			
4.04 0.800	$= 2^{15} = 32.768$				
$k_{CT-1} = \frac{1}{5} = 0,809$	32.768	15	40∙In	32.36	351,44
$I_{n-Tr-W2} = \frac{1050 \cdot 10^3}{\sqrt{3} \cdot 345} = 1757A$					
$I_{n-Tr-W2-sek} = \frac{1757A}{2000/5} = 4,39A$					
$k_{CT-2} = \frac{4,39}{5} = 0,878$					
$I_{n-Tr-W3} = \frac{1050 \cdot 10^3}{\sqrt{3} \cdot 13,8} = 43.930A$					
$I_{n-Tr-W3_sek} = \frac{43.930A}{1000/1} = 43,93A$					
$k_{CT-3} = \frac{43,93}{5} = 8,786 > 4!$		1	0,122%In	0,099%	1,072%

Differential Protection Symposium

7UT6 Operating characteristic

Differential Protection Symposium

I₀- elimination necessary at all windings with earthed neutral or with grounding transformer in the protection range Earth fault sensitivity reduced to 2/3 ! Incorrect fault type indication!

As an alternative, earth differential protection can be used to enhance earth fault sensitivity.

Transformer winding to earth fault Solid earthed neutral

Source: P.M. Anderson: Power System Protection, McGraw-Hill and IEEE Press (Book)

Differential Protection Symposium
Transformer winding to earth fault Resistance or reactance earthed neutral

Source: P.M. Anderson: Power System Protection, McGraw-Hill and IEEE Press (Book)

Differential Protection Symposium

Transformer winding short-circuit

Source: Protective Relays, Application Guide, GEC Alstom T&D, 1995

Differential Protection Symposium

Restricted earth fault protection of relay 7UT6

Differential Protection Symposium

Belo Horizonte November 2005

- n Increased sensitivity with earth faults near winding neutral Preferably used in case of resistance or reactance neutral earthing
- n Sensitive to turns short-circuit
- n I0 / IN amplitude and angle comparison
- n 2nd harmonic stabilised
- n Can protect a separate shunt reactor or neutral earthing transformer in addition to the two winding transformer differential protection
- n Not applicable with autotransformers! (as only one stabilising input at transformer terminal side, -- high impedance principle to be used in this case.

Transformer HI-earth fault protection

Differential Protection Symposium

HI differential protection of an autotransformer

Differential Protection Symposium

Belo Horizonte November 2005

HI earth fault protection of an autotransformer

Transformer tank protection 64T: Principle

Transformer protection, Relay design

7UT612: for protection objects with 2 ends (1/3 x 19" case 7XP20) 7UT613: for protection objects with 3 ends (1/2 x 19" case 7XP20) 7UT633: for protection objects with 3 ends (1/1 x 19" case 7XP20) 7UT635: for protection objects with 5 ends (1/1 x 19" case 7XP20)

Differential Protection Symposium

7UT6 Integrated protection functions

Function	ANSI No.	Function	ANSI No.
Differential	87T	Overfluxing V/Hz	24
Earth differential	87 N	Breaker failure	50BF
Phase overcurrent,	50/51	Temperature monitoring	38
Neutral overcurrent I_N >, t	50N/51N	Hand reset trip	86
Ground overcurrent (I _E , t)	50G/51G	Trip circuit supervision	74TC
Unbalanced current I_2 >, t	46	Dinony inputs for tripping of	
Thermal overload IEC 60255-8	49	Binary inputs for tripping co	ommanus
Therm. OL IEC 60354 (hot spot)	49		

Application range (7UT6)

Digital transformer protection relay 7UT613: Current inputs and integrated protective functions

Differential Protection Symposium

Belo Horizonte November 2005

Operating characteristic (7UT6)

Differential Protection Symposium

Belo Horizonte November 2005

7SA6: Temperature monitoring

- Two thermo-devices can be connected to the serial service interface (RS485)
- Monitoring of up to 12 measuring points (6 per thermo-device)
 - each with two pick-up levels
- Display of the measured temperatures
 - directly at the thermo-device (which can also be used stand alone)
 - at the relay
- One input is reserved for hot spot monitoring (measurement of oil temperature)
- Thermistors: Pt100, Ni100 or Ni120

7UT6: Temperature monitoring with hot spot calculation (1)

Example: Natural cooling

$$\Theta_{\rm h} = \Theta_{\rm O} + H_{\rm gr} \cdot k^{\rm Y}$$

Θ_h= hot spot temperature
Θ₀= oil temperature
H_{gr}=hot-spot-to-oil temperature gradient
k= load factor I/In
Y= winding exponent

Aging rate:

$$V = \frac{\text{Aging at }\Theta_{\text{h}}}{\text{Aging at }98^{\circ}\text{C}} = 2^{(\Theta_{\text{h}} - 98)/6}$$

98^o is reference for the aging of Cellulose insulation

Mean value of aging during a fixed time interval:

$$\mathbf{L} = \frac{1}{\mathbf{T}_2 - \mathbf{T}_1} \cdot \int_{\mathbf{T}_1}^{\mathbf{T}_2} \mathbf{V} \cdot \mathbf{dt}$$

Belo Horizonte November 2005

Differential Protection Symposium

7UT6: Temperature monitoring with hot spot calculation (2)

Differential Protection Symposium

Belo Horizonte November 2005

7UT6: Commissioning und service tool (1)

WEB-Technology

Help system in the INTRANET / INTERNET http://www.siprotec.com

Access to WEB Browser

Relay homepage address of : <u>http://141.141.255.160</u> IP-address can be set with program DIGSI 4 at the front or service interface of the relay

WEB server in relay firmware

Server sends HTML pages and JAVA code to WEB Browser via DIAL-UP connection

2. HTM L page view at IP-address of the relay http://141.141.255.160

network

1. Serial connection

Directy or with modem to standard DIAL-UP

Differential Protection Symposium

7UT6: Commissioning and service tool (2) Display of current phasors of all terminals

Differential Protection Symposium

Belo Horizonte November 2005

7UT6: Commissioning and service tool (3) Display of operating/restraint state

Transformer YNd11d11, 110/11/11kV, 38.1MVA, IL2S2à wrong polarity

Differential Protection Symposium

Belo Horizonte November 2005

Application examples

Protection of a two winding transformer

Protection of a three winding transformer

Differential Protection Symposium

Restricted earth fault protection for a two winding transformer

Protection of an autotransformer

Differential Protection Symposium

Protection of a large transformer bank

Differential Protection Symposium

Belo Horizonte November 2005

Protection of a phase regulating transformers

Protection of a compensation reactor No phase CTs at neutral side

Protection of a compensation reactor with phase CTs at neutral side

Differential protection of generation units (1)

Differential Protection Symposium

Differential protection of generation units (2)

Dimensioning of CTs at the station service transformer

Fault F1:

High fault currents in relation to the rated current of the station-service transformer T2 (>100xl_N) and long DC time constants (>100 ms) require considerable over-dimensioning of CT cores $I\!\!E$ and \bullet .

7UT61

Fault F2:

uncritical as current is limited by short-circuit impedance of station-service transformer T2. CT $\check{\mathbf{Z}}$ can have normal dimensions

Digital Transformer Differential Protection

I0-correction + vector group adaptation

Differential Protection Course

PTD Service Power Training Center Nürnberg 2005

G. Ziegler, 5/2005 page 1

Copyright © SIEMENS AG PTD SE 2002. All rights reserved.

Transformer differential protection with IO-correction External fault

Differential Protection Course

PTD Service Power Training Center Nürnberg 2005

Transformer differential protection with I0-correction Internal fault

Differential Protection Course

PTD Service Power Training Center Nürnberg 2005

Digital Line Differential Protection

Gerhard Ziegler

Differential Protection Symposium

Line differential protection, Versions

Differential Protection Symposium

Digital pilot wire relay 7SD600

Combines

ØTraditional pilot wire protection principle with

ØModern digital relay technology

Novel features:

- **§** Self-monitoring and pilot wire supervision
- § Saturation detector
- § Measurement of pilot loop resistance
- § Add-on functions

Differential Protection Symposium

Relay to Relay pilot wires communication New technology on existing (copper-) pilots

Digital Relay to Relay Communication (Overview)

Converter for digital communication via pilot wire

Line differential protection with converter for digital communication

Relay to Relay Communication: Two terminal configuration with hot standby connection

Differential Protection Symposium

SIEMENS Relay to Relay Communication: Ring- and Chain topology, loss of one data connection tolerated

Line differential relay with digital communication (7SD52) Application to 3-terminal line

Line differential relay with digital communication (7SD52) Application to tapped line

Line differential relay with digital communication (7SD61) Transformer-line protection

Relays 7SD52/61: Operating characteristic

7SD52/61: Impact of line charging current

 $\underline{I}_{\text{Diff}} = \underline{I}_1 + \underline{I}_2 + \underline{I}_C$ (currents \underline{I}_1 and \underline{I}_2 counted positive in line direction!)

Without charge current compensation:

Pick-up value: $I_{Diff>} > 2,5... 4 \cdot I_C$ è Senstive setting only for short cables or lines

With charge current compensation:

Pick-up value: $I_{Diff>} > 0,2 \bullet I_N$

7SD52/61: High resistance fault sensitivity

Differential Protection Symposium

7SD52/7SD61: Charge comparison protection supplement

Differential Protection Symposium

Development of IED processing and communication power

Year	Memory	Processing power	Bus width	Communication
1986	192 kB	0.5 MIPS	16 bit	19.2 kbps
1992	768 kB	1.0 MIPS	16 bit	115.2 kbps
1998	8.5 MB	35 MIPS	32 bit	1.5 Mbps (LAN)
2004	28 MB	80 MIPS	32 bit	100 Mbps (LAN)

21 & 87 Relay United full scheme distance and differential protection

Differential Protection Symposium

Universal line protection relay

For all kind of lines

Short to long lines	For all kind of communication:		
Parallel lines	Traditional : PLC, Pilot wires, Microwave		
Multi-terminal lines	Dedicated OF		
Tapped lines	Digital microwave	For all kind of operation Single and/or three-pole ARC	
Transformer lines	Comms networks		
Series comp. lines			

Line with larger transformer taps Release of 87 by 21 distance overreaching zone

Line differential relay with digital communication (7SD61) Application to tapped line, Example

Fully redundant line protection using dissimilar protection and comms principles

Fully redundant 87 and 21 teleprotection remains in operation in each combination of relay and communication failure!

Phase segregated 87 differential and 21 distance pilot protection: Enhanced selectivity with multiple faults

Phase selective fault clearance and auto-reclosing also with multiple-faults

Phase segregated 87 differential and 21 distance pilot protection: Enhanced selectivity with multiple faults

Phase selective fault clearance and auto-reclosing also with multiple-faults

Two-sided fault locator using 87&21 relay communication

Differential Protection Symposium

ü Combined distance and differential protection relays, together with modern comms, allow to enhance line protection in a cost saving way.

üThe dissimilar protection principles complement each other perfectly.

ÜDistance and differential protection can both be configured as phase segregated teleprotection schemes allowing absolute phase selective fault clearance and autoreclosure even with complex cross county and intercircuit faults.

üDigital relay to relay comms allows to exchange data for upgraded two sided fault locating.

üUsing a single relay type for distance and/or differential protection also saves on cost in investment and operation.

7SD51: Phase comparison,

Dynamic supplement based on delta-quantities

7SD51: Phase comparison

Differential Protection Symposium

7SD51: Phase comparison: Impact of charging current

Differential Protection Symposium

Phase comparison protection 7SD51:

Sampling of the rectangular sign wave and data transmission telegram

Measurement based on delta quantities, Principle

Digital Busbar Protection

Gerhard Ziegler

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 217

Busbar differential protection, Principle (Analog technique)

Differential Protection Symposium

Part-digital Busbar protection 7SS6

7SS6: Operating characteristic

Isolator replica, Principle, (stabilising circuit not shown)

Differential Protection Symposium

Decentralised BB-protection 7SS52, Structure

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 222
7SS50/52: Maximum configuration

	7SS50 centralised	7SS52 decentralised
Bays	32	48
BB-zones	8	12
couplings	4	16

Differential Protection Symposium

7SS50/52: Acquisition and supervision of isolator positions

Operating characteristic of BB protection 7SS52

BB-Protection 7SS52

Performance in networks with earth current limitation

Differential Protection Symposium

Check zone of busbar protection

Check zone:

- Ø in the past used with HI protection on EHV level (needs separate CT cores)
- Ø in general not used with traditional low impedance busbar protection (too expensive)
- Ø However, now integrated as software function in full scheme versions 7SS51 and 7SS52

7SS52: special restraint algorithm avoids over-stabilisation

7SS52: Special treatment of dead zone faults (1)

Bus coupler CB aux. contacts **not** connected:

- 87-A trips bus coupler
- Current inverted in 87-B after T-BF.
 Subsequently 87-B trips BB-B

Coupler CB auxiliary contacts connected:

- 87-B trips immediately after opening of bus coupler CB because coupler current is removed from bus protection.
 - \rightarrow time reduction (T-BF saved)

SIFMENS

7SS52: Special treatment of dead zone faults (2)

A) Bus coupler CB aux. contacts not connected:

- 87-A overfunctions and trips unnecessarily.
- 87-B "sees" an external fault and only trips finally through BF function (delay T-BF!)
- B) Bus coupler CB aux. contacts connected:
- 87-A remains stable ("sees" no fault current)
- 87-B trips immediately

Coupler CB auxiliary contacts connected to 7SS52: Coupler current is removed from 87-A and 87-B current comparison with open coupler CB.

7SS52: Special treatment of dead zone faults (3)

Two CTs in coupling bay, overlapping protection zones

Coupler CB auxiliary contacts connected:

- 87-A "sees" external fault and remains stable
- 67-B correctly trips BB-B

Coupler CB auxiliary contacts connected to 7SS52: Coupler currents are removed from 87-A and 87-B current comparison with open coupler CB.

7SS52: Treatment of switch onto a faulted (earthed) bus

- Coupler CB close command is detected by bus protection (change of biary input signal):
- Coupler current is immediately reincluded in the 87 current comparison before CB contacts close.
- Selective tripping of BB-B by 87-B.

With line fault and CB failure:

- Trip command of bay protection hangs on at BB protection
- Forced current reversal of the current of concerned bay after T-BF
- Zone selective tripping only of the concerned busbar
- Advantage: Reset time (overtravel time) of bay protection does not matter

External bay dedicated BF protection

Zone selective tripping via isolator replica of 7SS52 busbar protection

Bay (feeder) protection

- BF trip command to busbar protection binary input (for security: fault detection signal as second criterion)
- Distribution of trip commands via isolator replica to breakers of concerned busbar
- è zone selective tripping of concerned busbar

Fail safe design: 3-out-of-3 decision per bay

Digital busbar protection 7SS5, Measuring technique External fault, symmetrical fault current

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 237

Digital busbar protection 7SS5, Measuring technique Internal fault, symmetrical fault current

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 238

7SS5/6: Admissible over-burdening - Necessary dimensioning of CTs with regard to symmetrical fault currents

Differential Protection Symposium

Required restraining factor k dependent on over-burdening factor K_{OB} (over-dimensioning factor K_{TF})

Digital busbar protection 7SS5, Measuring technique External fault, fault current with DC offset

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 241

Digital busbar protection 7SS5, Measuring technique Internal fault, fault current with DC offset

Differential Protection Symposium

CT dimensioning for busbar protection 7SS5, Example (1)

CT dimensioning for busbar protection 7SS5 and 7SS6, Example (2)

As worst case, the CT 150/1 A in bay 1 is considered.

Total fault current with a fault at the transformer HV terminals:

$$\Sigma I_F = I_{F-T} + I_{F-G} + \Sigma I_{F-M} = 11,3 + 4,2 + 3,7 = 19,2 \text{ kA}$$

Equivalent time constant:

$$T_{\text{Equiv.}} = \frac{I_{\text{F}-\text{T}} \cdot T_{\text{T}} + I_{\text{F}-\text{G}} \cdot T_{\text{G}} + \Sigma I_{\text{F}-\text{M}} \cdot T_{\text{M}}}{I_{\text{F}-\text{T}} + I_{\text{F}-\text{G}} + \Sigma I_{\text{F}-\text{M}}} = \frac{11.3 \cdot 60 + 4.2 \cdot 100 + 3.7 \cdot 35}{11.3 + 4.2 + 3.7} = 64 \text{ ms}$$

We consider a CT type 5P?, 30 VA, internal burden Pi= 15% (4.5 VA):

Connected burden Pa= 1 VA CT over-dimensioning factor for 3ms saturation free time: K_{TF} ca. 0.45 Corresponding to an overburdening factor of $k_{OB} = 1/K_{TF} = 2.2$

Checking of the k-setting (Stability with symmetrical fault currents): $k > \frac{kOB}{4 \cdot \sqrt{kOB} - 1} = \frac{2.2}{4 \cdot (2.2 - 1)} = 0.5$ (chosen: k=0.6)

$$ALF = \frac{\Sigma I_F}{I_N - CT} \cdot K_{TF} = \frac{19.200}{150} \cdot 0.45 = 58 \qquad ALF = \frac{P_a + P_i}{P_N + P_i} \cdot ALF = \frac{1 + 4.5}{30 + 4.5} \cdot 58 = 9.3$$

We finally choose: CT 5P10, 150/1, 30 VA, R2≤ 4.5 Ohm

Differential Protection Symposium

Transient performance of iron closed CT cores (type TPX) Over-dimensioning factor K_{TF} for short time to saturation

High impedance busbar protection

- $\ensuremath{\mathsf{R}_{\text{CT}}}\xspace$: Resistance of CT secondary winding
- R_L: Connection cable resistance
- R_{RV}: Relay series resistance
- R_{RS} : Relay shunt resistance

HI busbar protection, calculation example

Given: :n = 8 feeders

$$r_{CT} = 600/1 \text{ A}$$

 $U_{KN} = 500 \text{ V}$
 $R_{CT} = 4 \text{ Ohm}$
 $I_{mR} = 30 \text{ mA} \text{ (at relay pick-up voltage)}$

 $\label{eq:RL} \begin{array}{l} \mathsf{R}_{\mathsf{L}} = 3 \ \mathsf{Ohm} \ (\mathsf{max.}) \\ \mathsf{I}_{\mathsf{R}} = 20 \ \mathsf{mA} \ (\mathsf{fixed value}) \\ \mathsf{R}_{\mathsf{RV}} = 10 \ \mathsf{kOhm} \\ \mathsf{R}_{\mathsf{RS}} = 250 \ \mathsf{Ohm} \\ \mathsf{I}_{\mathsf{v}} = 50 \ \mathsf{mA} \ (\mathsf{at relay pick-up voltage}) \end{array}$

Primary pick-up current:

$$I_{F-\min} = r_{CT} \cdot (I_R + I_S + I_V + n \cdot I_{mR})$$

$$I_{\text{F-min}} = \frac{600}{1} \cdot (0.02 + 0.89 + 0.05 + 8 \cdot 0.03)$$

 $I_{F-min} = 666A \cdot (111\% I_{N-CT})$

Stability with external faults: $I_{F-through -max} < r_{CT} \cdot \frac{R_R}{R_L + R_{CT}} \cdot I_R$ $I_{F-through -max} < \frac{600}{1} \cdot \frac{10.000}{3+4} \cdot 0.02$

$$I_{F-through - max} < 17 \text{ kA} = 28 \cdot I_n$$

Busbar protection, Composite current type (7SS600): Performance under unfavourable system earthing conditions

Busbar \mathcal{M} 3 ¥1, $I_{M} = 2 \cdot I_{L1} + 1 \cdot I_{L3} + 3 \cdot I_{E}$ $IM = 2 \cdot I_{11} + 1 \cdot I_{13} + 3 \cdot I_{F}$ $=2 \cdot (-|_{r}) + 1 \cdot (-|_{r}) + 3 \cdot 0 = -3 \cdot |_{r}$ $=2 \cdot I_{r} + 1 \cdot I_{r} + 3 \cdot 3 I_{r} = +12 \cdot I_{r}$ $I_{Op} = |I_{M1} + I_{M2}| = 9 \cdot I_F$ $I_{Res} = |I_{M1}| + |I_{M2}| = 15 \cdot I_F$ k = 9/15 = 0.6l_{Op} Fault L2-E k=0.5 Faults in other phases: Fault L1-E: $I_{Op} = (3+12) \cdot I_F = 15 \cdot I_F,$ $I_{Res} = (3+12) \cdot I_F = 15 \cdot I_F,$ k=1 Fault L3-E: $I_{Op} = (0+12) \cdot I_F = 12 \cdot I_F,$ $I_{Res} = (0+12) \cdot I_F = 12 \cdot I_F,$ k=1 I_{Res}

Differential Protection Symposium

Busbar protection, Composite current type (7SS600): Performance in networks with earth current limitation

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 249

Differential Protection 7UT6

Remarkable Features

The 7UT6 Family

7UT612: for protection objects with 2 ends (1/3 x 19" case 7XP20) 7UT613: for protection objects with 3 ends (1/2 x 19" case 7XP20) 7UT633: for protection objects with 3 ends (1/1 x 19" case 7XP20) 7UT635: for protection objects with 5 ends (1/1 x 19" case 7XP20)

7UT6: Hardware options

- ¹) 1A, 5A, (1A, 5A, 0.1A)
- ²) link selectable normal/sensitive
- ³) alpha-numeric

7UT6: Scope of functions

Function	ANSI No.	Function	ANSI No.
Differential	87T/G/M/L	Overfluxing V/Hz	24
Earth differential	87 N	Breaker failure	50BF
Phase overcurrent,	50/51	Temperature monitoring	38
Neutral overcurrent I _N >, t	50N/51N	Hand reset trip	86
Ground overcurrent (I _E , t)	50G/51G	Trip circuit supervision	74TC
Unbalanced current I ₂ >, t	46		, 110
Thermal overload IEC 60255-8	49	Binary inputs for tripping command	ĴS
Therm. OL IEC 60354 (hot spot)	49		

7UT6: Application

(1)

Differential Protection Symposium

7UT6: Application

(2)

HI restricted earth fault protection

Differential Protection Symposium Belo Horizonte November 2005 G.

G. Ziegler, 5/2005 page 253

7UT6: selectable: I_0 -correction or restricted earth fault protection

Differential Protection Symposium Belo Horizonte November 2005

7UT6: operating characteristic

Differential Protection Symposium

7UT6: Effect of supplementary restraint in case of CT saturation

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 5/2005 page 256
Differential protection functions I_{Diff} and I_{Diff} >>>

Fast tripping using sampled momentary values ensures dependable operation in case of extreme CT saturation!

Differential Protection Symposium

Belo Horizonte November 2005

7SA6: Temperature monitoring

- Two thermo-devices can be connected to the serial service interface (RS485)
- Monitoring of up to 12 measuring points (6 per thermo-device)
 - each with two pick-up levels
- Display of the measured temperatures
 - directly at the thermo-device (which can also be used stand alone)
 - at the relay
- One input is reserved for hot spot monitoring (measurement of oil temperature)
- Thermistors: Pt100, Ni100 or Ni120

7UT6: Temperature monitoring with hot spot calculation (1) Example: Natural cooling

$$\Theta_{\rm h} = \Theta_{\rm O} + H_{\rm gr} \cdot k^{\rm Y}$$

Θh= hot spot temperature
Θh= oil temperature
H_{gr}=hot-spot-to-oil temperature gradient
k= load factor I/In
Y= winding exponent

Aging rate:

$$V = \frac{\text{Aging at }\Theta_{\text{h}}}{\text{Aging at }98^{\circ}\text{C}} = 2^{(\Theta_{\text{h}} - 98)/6}$$

98^o is reference for the aging of Cellulose insulation

Mean value of aging during a fixed time interval:

$$\mathbf{L} = \frac{1}{\mathbf{T}_2 - \mathbf{T}_1} \cdot \int_{\mathbf{T}_1}^{\mathbf{T}_2} \mathbf{V} \cdot \mathbf{dt}$$

Differential Protection Symposium

7UT6: Temperature monitoring with hot spot calculation (1) Example: Natural cooling

Differential Protection Symposium

Belo Horizonte November 2005

7UT6: Commissioning und service tool (1)

WEB-Technology

Relay homepage address of : http://141.141.255.160 IP-address can be set with

program DIGSI 4 at the front or service interface of the relay

Server sends HTML pages and JAVA code to WEB Browser via **DIAL-UP** connection

Differential Protection Symposium

Belo Horizonte November 2005

7UT6: Commissioning and service tool Current phasors of all terminals can be displayed

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 5/2005 page 262

(2)

7UT6: Commissioning and service tool (3) Operating/restraint position can be displayed

Transformer YNd11d11, 110/11/11kV, 38.1MVA, IL2S2à wrong Polarität

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 5/2005 page 263

Power Transmission and Distribution

Differential Protection (7UT) Determination of the Transformer Vector Group

Transformer with Vector Group Yy0

SIEMENS

Method of Vector Group Determination (ExampleYy0)

Transformer Protection

Method of Vector Group Determination (ExampleYd11)

Definitions in SIPROTEC 4 Relays

Vector definition to a node is positive The shown vectors or phase angles are transformed in this positive definition The phase angle is displayed mathematics positive. The reference phase is always phase L1 on side 1

How to see the vector group Yd11?

Web Tool (Browser) Vector group YNd11

Secondary Values

SIEMENS

Digital Transformer Differential Protection

I0-correction + vector group adaptation

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 1

Transformer differential protection with IO-correction External fault

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 2

Transformer differential protection with IO-correction Internal fault

Differential Protection Symposium

Belo Horizonte November 2005

G. Ziegler, 10/2005 page 3

Power Transmission and Distribution

Differential Protection (7UT) Determination of the Transformer Vector Group

Transformer with Vector Group Yy0

Method of Vector Group Determination (ExampleYy0)

Transformer Protection

Method of Vector Group Determination (ExampleYd11)

Definitions in SIPROTEC 4 Relays

Vector definition to a node is positive The shown vectors or phase angles are transformed in this positive definition The phase angle is displayed mathematics positive. The reference phase is always phase L1 on side 1

How to see the vector group Yd11?

Web Tool (Browser) Vector group YNd11

Secondary Values

Vector Group Determination via Fault Record

